Four New Triterpenes from the Heartwood of Melaleuca leucadendron

Ching-Kuo Lee* and Ming-Huey Chang

China Junior College of Medical Technology, Tainan, Taiwan, Republic of China

Received April 27, 1998

Four new triterpenes, eupha-7,24-diene- 3β ,22 β -diol (1), 20-taraxastene- 3α ,28-diol (2), 3α ,27-dihydroxy-28,20 β -taraxastanolide (3), and 3α -hydroxy-13(18)-oleanene-27,28-dioic acid (4) have been isolated from the heartwood of *Melaleuca leucadendron*. The structures and stereochemistry of 1–4 have been determined by spectroscopic analysis, with compounds 3 and 4 being investigated in the forms of their diacetate (3a) and dimethyl (4a) derivative, respectively.

Melaleuca leucadendron L. (Myrtaceae), a large tree cultivated in Taiwan,¹ is the source of the food additive cajeput oil.² Sesquiterpenoids, triterpenoid acids, neutral triterpenoids, and stilbenes and related aromatic compounds have been reported previously from this plant.³⁻⁷ The major triterpenoids include compounds of the lupane, oleanane, and ursane types. In the present communication, we describe the isolation and identification of four compounds (**1–4**) from the heartwood of *M. leucadendron*, whose structures have been determined by spectroscopic analysis (Chart 1).

Compound 1 gave a molecular formula of C₃₀H₅₀O₂ by high-resolution mass spectrometry. EIMS fragment ions occurred at $m/z 427 [M - Me]^+$, $424 [M - H_2O]^+$, and 409 $[M - Me - H_2O]^+$. The ions at m/z 372 and 69, which resulted from allylic cleavage of the C-22/C-23 bond, suggested the presence of a double bond at C-24 and also the presence of an isopropylidine group in the side chain.⁸ The ¹H NMR data (Table 1) of 1, which were compared with the data of the known compound 1a,9 displayed signals for five quaternary methyls at $\delta_{\rm H}$ 0.72, 0.78, 0.83, 0.94, and 0.97, one secondary methyl at $\delta_{\rm H}$ 0.86 (3H, d, J = 7 Hz), two vinylic methyls at $\delta_{\rm H}$ 1.61 and 1.70 (each 3H, s), two doublet of doublets at $\delta_{\rm H}$ 3.21 (J = 4, 11 Hz) and 3.63 (J = 8, 6 Hz) for two hydroxyl methine protons, and two olefinic protons at $\delta_{\rm H}$ 5.11 (1H, t, J = 7 Hz) and 5.23 (1H, br d, J = 3 Hz). The position of the two hydroxyl groups was determined from the COSY-90 NMR spectrum, since the hydroxyl methine ($\delta_{\rm H}$ 3.63) and allylic proton ($\delta_{\rm H}$ 5.11) had the same cross-peaks at $\delta_{\rm H}$ 1.97 and 2.26 which indicated that both these protons were coupled to the same set of two protons. In addition, the doublet of doublets proton ($\delta_{\rm H}$ 3.21) and two methylene protons ($\delta_{\rm H}$ 1.11, 1.62) had the same cross-peak at $\delta_{\rm H}$ 1.54 and 1.58, which indicated clearly that these protons shared the same methene protons. From the HMBC spectrum of 1, the signal at $\delta_{\rm H}$ 3.63 was correlated with C-21 ($\delta_{\rm C}$ 11.5) and $\delta_{\rm H}$ 3.21 was correlated with C-28 ($\delta_{\rm C}$ 27.6) and C-29 ($\delta_{\rm C}$ 14.7), which allowed the placement of the two hydroxyl groups at C-22 and C-3, respectively.

The ¹³C NMR data (Table 2) of **1** were similar to values published for compound **1a**.⁹ Hence, **1** was considered to

possess the same triterpenoid skeleton as **1a**. The ¹³C NMR spectrum showed signals for six quaternary methyls at $\delta_{\rm C}$ 11.5, 13.1, 14.7, 21.8, 27.4, and 27.6, two vinylic methyl carbons at $\delta_{\rm C}$ 18.0 and 25.9, two hydroxyl methine carbons at $\delta_{\rm C}$ 73.2 and 79.2, two trisubstituted olefinic carbons at $\delta_{\rm C}$ 117.9 and 121.0, and two quaternary olefinic carbons at $\delta_{\rm C}$ 134.3 and 145.7. An equatorial orientation (β -stereochemistry) of the C-3 hydroxyl was also supported by the large coupling constant (J=11 Hz) between H-3 and H-2, and the coupling constant J_{20-22} (6 Hz) established the stereochemistry at C-22 as $S.^{10}$ From the above spectral data, compound **1** was determined structurally as eupha-7,24-diene- 3β ,22 β -diol.

Compound 2 exhibited a molecular ion peak at m/z 442 in its mass spectrum and its molecular formula was determined as $C_{30}H_{50}O_2$ by HREIMS. The ¹³C NMR data (Table 2) displayed seven methyls, ten methylenes, seven methines, and six quaternary carbons. A pentacyclic triterpenoid skeleton with one olefin accounted for the six degrees of unsaturation in 2. The mass spectrum of 2 demonstrated the existence of characteristic ion fragments at $m/z 424 [M - H_2O]^+$, 411 [M - CH₂OH]⁺, and 393 [411] - H₂O]⁺. The fragment ions at m/z 207 and 235 were due to cleavage of the C-8/C-14 and C-11/C-12 bonds, respectively.¹¹ This fragmentation pattern indicated the location of a hydroxyl group in ring A at C-3 and a CH₂OH group in ring D or E.11 The OH configuration of C-3 was determined as being α - from the coupling constant of H-3 (br s) and the ¹³C NMR chemical shift of C-5 (δ_{C} 48.6).¹² The C-28 methine proton was correlated with the H-22 allyl protons ($\delta_{\rm H}$ 1.51, 1.98) and the trisubstituted olefinic proton was correlated with the H-30 vinyl methyl proton ($\delta_{\rm H}$ 1.62) by the HMBC technique. Therefore, compound 2 was assigned as 20-taraxastene-3a,28-diol.

Compounds **3** and **4** were found to be difficult to obtain in pure form. Therefore, the structural determinations of **3** and **4** were based mainly on their diacetate (**3a**) and dimethyl (**4a**) derivative, respectively.

Treatment of **3** with pyridine-acetic anhydride afforded the diacetate **3a** [$C_{34}H_{52}O_6$, M⁺, m/z 556]. The IR spectrum of **3a** showed an absorption bond at 1736 cm⁻¹ (carbonyl), while there was no evidence in the IR spectrum for the presence of a carbon–carbon double bond or a hydroxyl group. The ¹H NMR data of **3a** (Table 1) included signals

^{*} To whom correspondence should be addressed. Tel.: +886 6 2671214, ext. 502. Fax: +886 6 2697731. E-mail: cklee@ccmt.ccmt.edu.tw.

Table 1. ¹H NMR Data of Compounds 1, 2, 3a, and 4a (CDCl₃, 300 MHz)

position	1	2	3a	4a
1	Ha 1.11 m	Ha 1.27 m	Ha 1.09 m	Ha 1.27 m
	Hb 1.62 m	Hb 1.42 m	Hb 1.42 m	Hb 1.42 m
2	Ha 1.54 m	Ha 1.53 m	Ha 1.58 m	1.49 m
	Hb 1.58 m	Hb 1.91 m	Hb 1.88 m	
3	3.21 dd (11, 4)	3.37 br s	4.60 br s	3.35 br s
5	1.28 m	1.23 m	1.13 m	1.24 m
6	Ha 1.92 m	Ha 1.07 m	Ha 1.28 m	Ha 1.23 m
	Hb 2.11 m	Hb 1.48 m	Hb 1.38 m	Hb 1.38 m
7	5.23 br d (3)	1.39 m	Ha 1.27 m	1.27 m
			Hb 1.52 m	
9	2.21 m	1.40 m	1.33 m	1.35 m
11	а	1.20 m	1.22 m	1.50 m
12	1.75 m	1.12 m	1.09 m	Ha 2.22 m
				Hb 2.81 m
13		1.56 m	1.29 m	
15	1.44 m	а	1.59 m	Ha 1.67 m
				Hb 1.87 m
16	Ha 1.24 m	Ha 1.10 m	Ha 1.52 m	Ha 1.28 m
	Hb 1.92 m	Hb 1.63 m	Hb 1.61 m	Hb 1.81 m
17	1.83 m			
18	0.72 s	1.21 m	1.21 m	
19	0.78 s	1.63 m	1.52 m	Ha 1.51 m
				Hb 2.49 m
20	1.38 m			
21	0.86 d (7)	5.27 br d (7)	1.87 m	1.21 m
22	3.63 dd (8, 6)	Ha 1.51 dd (16, 7)	0.87 m	Ha 1.51 m
		Hb 1.98 dd (16, 7)		Hb 2.15 m
23	Ha 1.97 m	0.91 s	0.81 s	0.91 s
	Hb 2.26 m			
24	5.11 t (7)	0.98 s	0.84 s	0.79 s
25		1.00 s	0.84 s	0.86 s
26	1.70 s	0.83 s	0.93 s	0.90 s
27	1.61 s	0.97 s	Ha 4.27 d (13)	
			Hb 4.40 d (13)	
28	0.94 s	Ha 3.45 d (11)		
		Hb 3.64 d (11)		
29	0.83 s	0.98 d (7)	0.97 d (7)	0.89 s
30	0.97 s	1.62 s	1.29 s	0.74 s
OMe				3.63 s, 3.63 s
OAc			2.08 s, 2.08 s	

^{*a*} These protons were not observed in an HMQC experiment. due to a downfield methyl ($\delta_{\rm H}$ 1.29), a secondary methyl ($\delta_{\rm H}$ 0.97, J = 7 Hz), and four tertiary methyls of an ursane skeleton.¹³ Also, it showed one acetate at $\delta_{\rm H}$ 4.60 (br s), assignable to 3 β -H, and an AB system ($\delta_{\rm H}$ 4.27 and 4.40, J = 13 Hz), indicative of the presence of a hydroxymethylene group attached to an asymmetric center (C-14).¹³ The mass spectrum included peaks at m/z 248 (100%) and 189, which

Table 2. ¹³C NMR Data of Compounds 1, 2, 3a, and 4a (CDCl₃, 75 MHz)^a

carbon	1	2	3a	4a
1	37.2 t	33.3 t	34.1 t	33.2 t
2	27.7 t	25.3 t	21.9 t	25.2 t
3	79.2 d	76.2 d	78.0 d	76.0 d
4	38.9 s	37.5 s	37.5 s	37.4 s
5	50.6 d	48.6 d	50.5 d	48.4 d
6	23.9 t	18.2 t	18.0 t	18.4 t
7	117.9 d	34.0 t	34.8 t	35.5 t
8	145.7 s	41.3 s	41.5 s	42.3 s
9	48.9 d	50.1 d	51.6 d	52.3 d
10	34.9 s	37.2 s	36.7 s	37.7 s
11	18.1 t	21.3 t	22.9 t	20.4 t
12	33.8 t	26.7 t	25.0 t	26.6 t
13	43.4 s	38.2 d	43.6 d	133.0 s
14	51.1 s	42.2 s	41.8 s	59.1 s
15	34.0 t	27.5 t	20.9 t	23.9 t
16	27.6 t	30.2 t	32.1 t	33.4 t
17	49.2 d	38.6 s	43.9 s	48.4 s
18	13.1 q	49.0 d	48.3 d	131.1 s
19	21.8 q	36.3 d	42.2 d	41.4 t
20	40.4 d	141.0 s	84.2 s	33.6 s
21	11.5 q	117.8 d	26.9 t	37.0 t
22	73.2 d	35.0 t	27.9 t	35.5 t
23	34.3 t	28.2 q	27.7 q	28.2 q
24	121.0 d	22.9 q	21.8 q	22.3 q
25	134.3 s	16.1 q	16.5 q	16.0 q
26	25.9 q	16.0 q	16.0 q	18.2 q
27	18.0 q	14.9 q	62.7 t	177.0 s
28	27.6 q	60.1 t	177.0 s	176.5 s
29	14.7 q	22.1 q	18.7 q	32.1 q
30	27.4 q	20.9 q	23.9 q	24.0 q
OMe				51.3 q, 51.7 q
0CO <i>C</i> H ₃			21.4 q, 21.5 q	
0 <i>C</i> 0CH ₃			170.9 s, 171.6 s	

 a Multiplicity ($q=CH_3,\,t=CH_2,\,d=CH,\,s=C)$ determined by DEPT experiments.

suggested that an acetate group was situated on either the A or B ring. The methine proton ($\delta_{\rm H}$ 1.52) correlated with a second methyl ($\delta_{\rm H}$ 0.97) from the COSY-90 experiment and the downfield methyl ($\delta_{\rm C}$ 23.9) and δ -lactone ($\delta_{\rm C}$ 177.0) similarly correlated with the signal at $\delta_{\rm H}$ 1.52 in the HMBC spectrum. Thus, the structure of **3a** was assigned as 3α ,27-diacetoxy-28,20 β -taraxastanolide.

Compound **4** was obtained as the dimethyl derivative **4a**. The mass spectrum in this derivative exhibited the $[M]^+$

ion at m/z 514 (C₃₂H₅₀O₅). The IR spectrum of **4a** showed the presence of carbonyl (1718 cm⁻¹) and hydroxyl (3582 cm^{-1}) functions. The structure of **4a** was determined from its ¹H and ¹³C NMR data (Tables 1 and 2) and 2D NMR experiments (1H-1H COSY, HMQC, and HMBC). The 1H NMR spectrum of 4a showed the presence of six characteristic tertiary methyl and two O-methyl groups, which was reminiscent of an oleanane-type triterpene.¹⁴ However, since protons at C-12 and C-18 were not observed, 4a was assigned as an olean-13(18)-ene structure. The ¹³C NMR spectrum revealed the presence of six methyl carbons which correlated in the HMQC spectrum with the six abovementioned singlets, two olefinic signals ($\delta_{\rm C}$ 131.1 and 133.0), a hydroxyl methine signal at $\delta_{\rm C}$ 76.0, and two carboxylic groups at $\delta_{\rm C}$ 176.5 and 177.0. The latter carbons were correlated in the HMBC spectrum with the C-15 and C-16 protons at $\delta_{\rm H}$ 1.67, 1.87 and $\delta_{\rm H}$ 1.28, 1.81, respectively. Thus, the structure of **4a** was determined as methyl 3α hydroxy-13(18)-oleanene-27,28-dioate.

Experimental Section

General Experimental Procedures. Melting points were measured on a Yanagimoto (MP-500) micro-melting point apparatus. Optical rotation measurements were conducted on a JASCO DIP-1000 instrument; a quartz cuvette (length 10 cm) was used. IR spectra were recorded on a Nicolet Magna-550 spectrophotometer; UV spectra were recorded on a Hitachi U-3210 spectrophotometer. ¹H and ¹³C NMR spectra were run on a Bruker AM-300 spectrometer, with 2D NMR spectra run on a Bruker DMX-500SB spectrometer, using CDCl₃ as solvent. The resonances of residual CDCl3 at $\delta_{\rm H}$ 7.24 and of CDCl₃ at $\delta_{\rm C}$ 77.0 were used as internal references for the ¹H NMR and ¹³C NMR spectra, respectively. Mass spectra were recorded (Finnigan TSQ-700 spectrometer) at an ionizing voltage of 70 eV. High-resolution mass spectra (HRMS) were recorded on a JEOL SX-102A spectrometer. Merck silica gel 60F sheets were used for analytical TLC. HPLC was carried out on a Hichrosorb Si 60 (10 $\mu m)$ column (25 cm \times 1 cm).

Plant Material. The heartwood of *M. leucadendron* L. was collected in July 1994 on the campus of the National Taiwan University and was identified by Mr. Shing-Fan Huang, Department of Botany, National Taiwan University. A voucher specimen has been deposited at China Junior College of Medical Technology (C. C. M. T., accession # 8308).

Extraction and Isolation. The air-dried heartwood of *M*. leucadendron (10 kg) was crushed into small pieces, and extracted with Me₂CO (70 L \times 3) at room temperature. The extract was concentrated and partitioned between CHCl₃ and water. The organic layer was concentrated to give an oily residue (125 g) that was chromatographed over silica gel 60 (Merck, 230-400 mesh) and eluted with hexane/EtOAc mixtures of increasing polarity to give 14 fractions. Fraction 10, eluted with hexane/EtOAc (10:3), was further separated or purified by repeated column chromatography and preparative HPLC (solvent system: hexane-EtOAc, 5:1; 7:3; 3:1, and 2.5: 1), to give 1 (26 mg), 2 (2 mg), 3 (2 mg), and 4 (13 mg), respectively.

Eupha-7,24-diene-3 β ,22 β -diol (1): amorphous solid; $[\alpha]^{25}$ _D -24° (c 0.26, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log $\epsilon) 207$ (3.12) nm; IR (neat) v_{max} 3416 (OH), 2932, 2878, 1458, 1384, 1031, 987 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; EIMS m/z 442 [M]⁺ (8), 427 (6), 424 (7), 409 (6), 372 (73), 357 (100), 339 (25), 69 (24); HREIMS m/z 442.3806 (calcd for $C_{30}H_{50}O_2$, 442.3813).

20-Taraxastene-3 α ,**28-diol (2):** amorphous solid; $[\alpha]^{25}$ _D +48° (*c* 0.012, MeOH); UV (MeOH) λ_{max} (log ϵ) 207 (3.38) nm; IR (neat) v_{max} 3442 (OH), 2935, 2866, 1453, 1379, 1027, 987 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; EIMS m/z442 [M]+ (28), 424 (31), 411 (100), 393 (27), 385 (23), 367 (24), 339 (25); HREIMS *m*/*z* 442.3824 (calcd for C₃₀H₅₀O₂, 442.3813).

3a,27-Dihydroxy-28,20β-taraxastanolide (3): Treatment of impure **3** (2 mg) with Ac₂O (2 mL) and pyridine (2 mL) at 42 °C overnight followed by HPLC (hexanes-EtOAc 7:3) separation gave the corresponding diacetate 3a (2 mg); amorphous solid; $[\alpha]^{25}_{D}$ –31° (c 0.02, MeOH); UV (MeOH) λ_{max} (log ϵ) 207 (3.41), 296 (2.28) nm; IR (neat) ν_{max} 2938, 2872, 1736, 1453, 1378, 1246, 1034 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; EIMS *m*/*z* 556 [M]⁺ (0.3), 496 (8), 436 (100), 248 (100), 202 (40), 189 (55); HREIMS m/z 556.3765 (calcd for C₃₄H₅₂O₆, 556.3766).

3a-Hydroxy-13(18)-oleanene-27,28-dioic acid (4): Treatment of impure 4 (11 mg) with diazomethane in methanol solution followed by HPLC (hexanes-EtOAc 3:1) separation gave its O-methylated product 4a (12 mg); amorphous solid; $[\alpha]^{25}_{D}$ – 42° (*c* 0.11, MeOH); UV (MeOH) λ_{max} (log ϵ) 209 (3.21), 306 (2.01) nm; IR (neat) v_{max} 3582, 2948, 2870, 1718, 1458, 1387, 1264, 1215, 1156 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; EIMS m/z 514 [M]⁺ (13), 496 (34), 482 (100), 464 (20), 437(26), 421 (23), 405 (25); HREIMS m/z 514.3661 (calcd for C32H50O5 514.3660).

Acknowledgment. We are grateful to Professor Yu-Shia Cheng of the Department of Chemistry, National Taiwan University, for her encouragement and support. The project was funded by the National Science Council of the Republic of China.

References and Notes

- (1) Yang, T. I. A List of Plants in Taiwan; Natural Publishing Co. Ltd.: Taipei, 1982; p 981.
- (2) Gan, W. S. Manual of Medicinal Plants in Taiwan; National Research Institute of Chinese Medicine: Taipei, 1965; Vol. 3, pp 613–615.
- (3) Hui, W.-H.; Li, M.-M. Phytochemistry 1976, 15, 563
- (4) Tsuruga, T.; Chun, Y. T.; Ebizuka, Y. Chem. Pharm. Bull. 1991, 39, 3276-3278.

- (5) Lee, C. K. J. Nat. Prod. 1998, 61, 375–376.
 (6) Lee, C. K. J. Chin. Chem. Soc. 1998, 45, 303–306.
 (7) Lee, C. K. Phytochemistry 1998, 49, 1119–1122.
- (8) Sonoda, Y.; Sato, Y. Chem. Pharm. Bull. 1983, 31, 907-911.
- (9) Venkatraman, G.; Thombare, P. S.; Sabata, B. K. Phytochemistry **1993**, *32*, 161–163.
- (10) Gonzalez, A. G.; Exposito, T. S.; Barrera, J. B. J. Nat. Prod. 1993, 56, 2170-2174.
- (11) Alam, M. S.; Chopra, N.; Ali, M.; Niwa, M.; Sakae, T. Phytochemistry **1994**. 37. 521-524.
- Mahato, S. B.; Kundu, A. P. *Phytochemistry* **1994**, *37*, 1517–1575.
 Brrington, S. G.; Jefferies, P. R. *Phytochemistry* **1988**, *27*, 543–545.
- Takeshita, T.; Hamada, S.; Nohara, T. Chem. Pharm. Bull. 1989, 37, (14)846-848.

NP980169E